
4
MSM/TSM Data Structures and Variables

Introduction . 4-3

MSM Equates . 4-4
MSMVirtualBoardLink . 4-4
MSMStatusFlags . 4-5
MSMTxFreeCount . 4-6
MSMMaxFrameHeaderSize . 4-7
MSMPhysNodeAddress . 4-8

Public Variables . 4-9
LogicalToPhysical . 4-9
PhysicalToLogical . 4-9

Data Structures . 4-10
Receive Control Blocks . 4-11

Fragmented RCB . 4-12
Non-Fragmented RCB . 4-14

Transmit Control Blocks . 4-16
TCB for Ethernet, Token-Ring, PCN2, and FDDI 4-17
TCB for RX-Net . 4-18
Fragment Structure . 4-21

Event Control Blocks . 4-22
Receive ECBs vs RCBs . 4-24
Transmit ECBs vs TCBs . 4-25
ECB Field Descriptions . 4-26

Version 1.00 4 – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

4 – 2 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Introduction

This chapter describes the data structures, variables, and constants
defined by the MSM and TSM. Some of the variables and structures in
this chapter are required to control processes and must be initialized,
updated, or managed by the driver. Others are made available as
optional support for the developer and may be used accordingly.

MSM Equates

• MSMVirtualBoardLink

• MSMStatusFlags
• MSMTxFreeCount

• MSMMaxFrameHeaderSize
• MSMPhysNodeAddress

Public Variables

• LogicalToPhysical

• PhysicalToLogical

Data Structures

• Receive Control Blocks (RCBs)

• Transmit Control Blocks (TCBs)
• Event Control Blocks (ECBs)

Version 1.00 4 – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSM Equates

The HSM must access several variables located in the MSM’s Data
Space. This section describes the MSM defined equates which enable
the HSM to access these variables. The equates represent negative
offsets which are used in conjunction with EBP, the pointer to the
Adapter Data Space.

MSMVirtualBoardLink

The MSM maintains a separate configuration table for each frame type
supported by the driver. MSMVirtualBoardLink is used to access a list
of pointers to the configuration tables.

The list contains 4 pointers for Ethernet, 2 for Token-Ring, PCNII, and
FDDI, and 1 for RX-Net. If a particular frame has not been loaded, the
pointer to the corresponding configuration table will be zero. The lists
are accessed as follows.

Ethernet
[ebp].MSMVirtualBoardLink + 00h ;ETHERNET 802.3
[ebp].MSMVirtualBoardLink + 04h ;ETHERNET II
[ebp].MSMVirtualBoardLink + 08h ;ETHERNET 802.2
[ebp].MSMVirtualBoardLink + 0Ch ;ETHERNET SNAP

Token-Ring
[ebp].MSMVirtualBoardLink + 00h ;TOKEN 802.2
[ebp].MSMVirtualBoardLink + 04h ;TOKEN SNAP

PCN2
[ebp].MSMVirtualBoardLink + 00h ;PCN2 802.2
[ebp].MSMVirtualBoardLink + 04h ;PCN2 SNAP

FDDI
[ebp].MSMVirtualBoardLink + 00h ;FDDI 802.2
[ebp].MSMVirtualBoardLink + 04h ;FDDI SNAP

RX-Net
[ebp].MSMVirtualBoardLink + 00h ;RX-Net

Example

mov ebx, [ebp].MSMVirtualBoardLink+08h ; Ptr to E_802.2 config table
or ebx, ebx ; Check if valid pointer?
jz Frame8022NotRegistered ; Jump if not
mov eax, [ebx].MLIDSlot ; EAX = Our slot number

4 – 4 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

MSMStatusFlags

The MSM maintains a dword variable which provides certain adapter
status information. This status information enables the driver to
determine if the adapter is shutdown or if the MSM has any packets
waiting in its transmit queue. The MSMStatusFlags equate represents
a negative offset which is used in conjunction with EBP, the pointer to
the Adapter Data Space, to access the status variable. It is defined in
the MSM.INC file as follows:

MSMStatusFlags equ DriverAdapterStart -(2*4)

SHUTDOWN equ 01h ; Bit #0 = Shutdown Status
TXQUEUED equ 02h ; Bit #1 = Tx Queue Status

MSMStatusFlags can be used by the HSM to determine whether the
adapter is partially shutdown. If bit #0 is set, the adapter is partially
shutdown and should not be serviced. Likewise, the MSM will not call
DriverSend to transmit a packet if the adapter is partially shutdown.

test [ebp].MSMStatusFlags,SHUTDOWN
jnz DoNotServiceAdapter

The status flags can also be used to determine if the TSM has any send
TCBs queued, thus saving a call to <TSM>GetNextSend. If bit #1 is
set, the TSM has at least one packet queued for transmission.

Note: RX-Net drivers cannot use this test since additional fragments of a split
packet are not detected.

test [ebp].MSMStatusFlags,TXQUEUED
jz NoSendsQueued

Example

DriverISR proc
•
•
•

TransmitComplete: ; EBP = Ptr to Adapter Data Space

inc [ebp].MSMTxFreeCount ; Free adapter’s transmit resource
mov [ebp].TxInProgress, 0 ; Clear transmit in progress flag

;*** Transmit Next Packet ***

test [ebp].MSMStatusFlags,TXQUEUED ; Anything in send queue?
jz NoSendsQueued ; Jump if nothing to send
call <TSM>GetNextSend ; Otherwise get the next TCB from
call DriverSend ; the queue and send it
•
•
•

MSMServiceEventsAndReturn

DriverISR endp

Version 1.00 4 – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMTxFreeCount

During initialization, the HSM must specify the number of hardware
resources available on the adapter for handling pending packet
transmissions. The MSM uses this value to determine if the adapter
is ready to accept another packet for transmission. The count is also
used to determine how many TCB structures the MSM will allocate.
The MSMTxFreeCount equate represents a negative offset which is
used in conjunction with EBP, the pointer to the Adapter Data Space,
to access the count. It is defined in the MSM.INC file as follows:

MSMTxFreeCount equ DriverAdapterStart -(1*4)

For example, if the adapter has a second transmit buffer that can
accept another packet before the current transmission is complete, the
driver should set MSMTxFreeCount to a value of 2. Some adapters
support hardware queuing. In this case, the count should represent the
number of transmissions that the adapter can efficiently process. If the
adapter has no additional resources available other than those used to
transmit the current packet, set MSMTxFreeCount to 1.

The TSM decrements this count before it calls DriverSend. The count
is also decremented during a successful call to <TSM>GetNextSend.
The TSM assumes that the adapter is not ready for another packet if
this count reaches zero.

The driver is responsible for incrementing the count each time one of
the adapter’s transmit resources becomes available. The count must be
incremented not only when the adapter successfully completes a
transmission, but also when a transmission is aborted due to timeout
errors, maximum retry errors, ...etc.

Example

DriverInit proc ; EBP = Ptr to Adapter Data Space
•
•
•

mov [ebp].MSMTxFreeCount,2 ; Adapter has 2 transmit resources
•
•
•

DriverInit endp

DriverISR proc
•
•
•

TransmitComplete:
inc [ebp].MSMTxFreeCount ; Free adapter’s transmit resource
•
•
•

DriverISR endp

4 – 6 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

MSMMaxFrameHeaderSize

The <TSM>GetRCB procedure, which may be used during packet
reception, employs a "LookAhead" process in which the header
information of a received packet is transferred into a buffer and
previewed by the TSM. This way, the TSM can first verify that it
wants the packet, before the entire packet is read from the adapter.

The TSM sets the MSMMaxFrameHeaderSize value to the number of
bytes the driver must transfer to that LookAhead buffer. Its value is
equal to the MLIDLookAheadSize value from the configuration table
plus the maximum media header size. It can be up to 128 bytes, the
maximum MLIDLookAheadSize, plus the maximum media header size.

For example: MLIDLookAheadSize = 128

Ethernet Maximum Media Header Size = 22
MSMMaxFrameHeaderSize = 128 + 22 = 150

To access the size, the MSMMaxFrameHeaderSize equate is used in
conjunction with EBP, the pointer to the Adapter Data Space.

mov ecx, [ebp].MSMMaxFrameHeaderSize

Your driver must read the size each time before calling <TSM>GetRCB
since it may dynamically change. The driver may optionally implement
the DriverRxLookAheadChange routine to allow HSMs for intelligent
adapters to be informed when the size changes rather than constantly
checking.

For more information on the LookAhead process, see the Packet
Reception section in Chapter 5 and the <TSM>GetRCB procedure in
Chapter 6. Refer to the DriverRxLookAheadChangePtr field description
of the DriverParameterBlock in Chapter 3 for more information on
implementing this control procedure for intelligent adapters.

Example

DriverISR proc ; ebp = Ptr to Adapter Data Space
•
•
•

ReceiveEvent:

mov ecx, [ebp].MSMMaxFrameHeaderSize
lea edi, [ebp].LookAheadBuffer
rep insb
lea esi, [ebp].LookAheadBuffer ; Ptr to LookAhead Buffer
mov ecx, ReceivePacketSize ; Get Packet Size
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted
•
•
•

Version 1.00 4 – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMPhysNodeAddress

The MSMPhysNodeAddress equate is a negative offset that is used in
conjunction with EBP, the pointer to the Adapter Data Space, to access
the physical layer format of the node address. It is defined in the
MSM.INC file as follows:

MSMPhysNodeAddress equ DriverAdapterStart -(16*4)

If bit 15 of the MLIDModeFlags is set, the driver must use MSMPhys-

NodeAddress instead of the configuration table MLIDNodeAddress to
obtain the physical layer format of the node address. The MSM sets
the MSMPhysNodeAddress value when the driver’s initialization
routine calls MSMRegisterMLID.

For additional information, refer to the configuration table
MLIDNodeAddress and MLIDModeFlags descriptions in Chapter 3 and
the canonical/non-canonical format discussion in Appendix G.

Example

DriverReset proc ; ebp = Ptr to Adapter Data Space

lea esi,[ebp].MSMPhysNodeAddress
lea edi,[ebp].OpenAdapterNode
movsd
movsw
•
•
•

DriverReset endp

4 – 8 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Public Variables

The following public variables are provided by the MSM and may be
used by the developer as needed. The variables are available to the
HSM using the "extern" statement and must be included in the HSM’s
linker definition file using the "import" keyword. (see Appendix A)

LogicalToPhysical / PhysicalToLogical

These variables are dword values that can be added to an address in
order to convert it from a logical to physical or a physical to logical
address. This may be needed by bus-master adapters designed with
controllers that require absolute addresses.

For example, the HSM for a bus-master adapter may need to use
LogicalToPhysical during DriverSend to convert the TCB address to an
absolute address, then use PhysicalToLogical in DriverISR when the
transmission is complete before giving the TCB back to the TSM.

Note: Do NOT use these variables to convert shared RAM addresses. You

should use the MLIDMemoryDecode and MLIDLinearMemory fields of
the configuration table for the physical and logical shared RAM
addresses.

Example

DriverSend proc
•
•
•

mov eax, esi ; EAX -> TCB
add eax, LogicalToPhysical ; EAX = physical address
out dx,eax ; Pass address to adapter
mov [ebp].TCBInProcess,eax

•
•
•

DriverSend endp

DriverISR proc
•
•
•

TransmitComplete:
mov esi, [ebp].TCBInProcess ; ESI -> TCB
add esi, PhysicalToLogical ; ESI = logical address
call <TSM>SendComplete

•
•
•

DriverISR endp

Version 1.00 4 – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Data Structures

The structures used to transfer data between the layers of the ODI
model are called Event Control Blocks (ECBs). The MSM defines two
specific forms of the ECB structure.

• Receive Control Blocks (RCBs)
• Transmit Control Blocks (TCBs)

These streamlined forms of the general ECB structure are provided by
the MSM to simplify driver development. Only the fields relevant to
the specific packet transaction in progress are visible to the driver.

The following section describes the RCB and TCB structures. The HSM
must refer to these structures during packet reception and
transmission. The relationship of these MSM structures with the
general ECB structure is also discussed.

Specific reception and transmission methods and related MSM/TSM
support routines are described in Chapter 5.

Link Support Layer

Support Modules

Hardware Specific Module

RCB TCB

ECB

(MSM/TSM)

(HSM)

Figure 4.1 Packet transfer in the MSM/ODI Model

4 – 10 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Receive Control Blocks

Receive Control Blocks are the structures used to transfer data from the
HSM to the TSM.

Usually, when the adapter receives a packet, the HSM obtains a
Receive Control Block from the TSM and copies the packet into the
RCB’s data fragment buffer(s). The RCB is passed back to the TSM
where it is processed and transferred to the Link Support Layer. The
Link Support Layer then directs it to the proper protocol stack.

On a server, there will normally be only one fragment buffer into which
the received data must be copied, therefore drivers should be optimized
for one fragment receives. However, the driver’s receive routine should
be designed to handle multiple fragment buffers if possible. Bit 10 of
the MLIDModeFlags field in the configuration table must be set if the
driver can handle fragmented receive buffers.

The following support routines are available to obtain RCBs.

• MSMAllocateRCB

• <TSM>GetRCB
• <TSM>ProcessGetRCB

• <TSM>FastProcessGetRCB

The <TSM>GetRCB routine provides fragmented RCBs. Drivers that
cannot handle fragmented receive buffers should use MSMAllocateRCB,
<TSM>ProcessGetRCB, or <TSM>FastProcessGetRCB to obtain RCBs.
Chapter 5 describes specific reception methods and illustrates the use
of these support routines.

The following section describes the RCB structures and fields.
The structures are defined in the MSM.INC file.

Version 1.00 4 – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Fragmented RCB

Figure 4.2 Fragmented Receive Control Block

RCBStructure struc

RCBDriverWS db 8 dup (0) ; Driver Workspace

RCBReserved db 40 dup (0) ; Reserved for MSM use

RCBFragmentCount dd ? ; Number of Fragments

RCBFragmentOffset1 dd ? ; Pointer to the 1st Fragment Buffer

RCBFragmentLength1 dd ? ; Length of the 1st Fragment Buffer

RCBStructure ends

• ;*** Additional Fragment Descriptors ***
•
•

;; RCBFragmentOffsetn dd ? ; Pointer to the nth Fragment Buffer

;; RCBFragmentLengthn dd ? ; Length of the nth Fragment Buffer

RCBDriverWS

RCBReserved ••• (40 bytes)

RCBFragmentCount

RCBFragmentOffset1

RCBFragmentLength1

• •
• • (Rcv Buffer #1)
• •
• •
• •

RCBFragmentOffsetn

RCBFragmentLengthn

(Rcv Buffer #n)

RCBDriverWS cannot be used by RX-Net drivers.

4 – 12 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Fragmented RCB Field Descriptions

Offset Name Bytes Description

00h RCBDriverWS 8 The HSM may use this field for any purpose as long

as it controls the RCB. (RX-Net drivers cannot use

this field)

08h RCBReserved 40 This field should not be modified by the HSM. It

contains status indicators, protocol information, and

additional data maintained by the MSM and Link

Support Layer.

30h RCBFragmentCount 4 This field contains the number of data fragment

descriptors to follow. Each descriptor consists of a

pointer to a fragment buffer and the size of that

buffer. The HSM will copy the received packet into

these buffers.

34h

38h

•
•
•

RCBFragmentOffset1

RCBFragmentLength1

•
•
•

RCBFragmentOffsetn

RCBFragmentLengthn

4

4

•
•
•

Pointer to the 1st fragment buffer.

Length of the 1st fragment buffer.

Immediately following the RCB in memory are

additional fragment descriptors.

Version 1.00 4 – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Non-Fragmented RCB

Figure 4.3 Non-Fragmented Receive Control Block

RCBStructure struc

RCBDriverWS db 8 dup (0) ; Driver Workspace

RCBReserved db 40 dup (0) ; Reserved for MSM

RCBFragmentCount dd 1

RCBFragmentOffset1 dd ?

RCBFragmentLength1 dd ?

RCBStructure ends

;; RCBDataBuffer equ RCBFragmentLength1 + 4 ; Buffer for Packet

RCBDriverWS

RCBReserved ••• (40 bytes)

RCBFragmentCount

RCBFragmentOffset1 * * * *

RCBFragmentLength1 * * * *

RCBDataBuffer

RCBDriverWS cannot be used by RX-Net drivers.

4 – 14 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Non-Fragmented RCB Field Descriptions

Offset Name Bytes Description

00h RCBDriverWS 8 The HSM may use this field for any purpose as long

as it controls the RCB. (RX-Net drivers cannot use

this field)

08h RCBReserved 40 This field should not be modified by the HSM. It

contains status indicators, protocol information, and

additional data maintained by the MSM and Link

Support Layer.

30h RCBFragmentCount 4 This field contains the number of data fragment

descriptors to follow. This field will always be 1 for

non-fragmented receives.

34h RCBFragmentOffset1 4 The HSM should NOT use this field. The TSM

determines this value after the HSM returns the

RCB for processing. (It will contain a pointer to the

"data" portion of the received packet in the

RCBDataBuffer.)

38h RCBFragmentLength1 4 The HSM should NOT use this field. The TSM

determines this value after the HSM returns the

RCB for processing. (It will contain the length of

the "data" portion of the received packet in the

RCBDataBuffer.)

3Ch RCBDataBuffer ? Immediately following the RCB in memory is a

buffer for the received packet. The HSM copies the

received packet into this buffer. For some frame

types this data buffer contains MAC layer headers.

(Refer to the MSMAllocateRCB routine for

information on using a non-fragmented RCB)

Version 1.00 4 – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Transmit Control Blocks

Transmit Control Blocks are the structures used to transfer data from
the TSM to the HSM.

Link Support Layer

Support Modules

Hardware Specific Module

RCB TCB

ECB

(MSM/TSM)

(HSM)

Figure 4.4 Packet transfer in the MSM/ODI Model

When sending a packet, a protocol stack assembles a list of fragment
pointers in a transmit ECB and passes it to the Link Support Layer.
The ECB is then transferred to the TSM where the information is
processed and a TCB is constructed. The TCB structure consists of the
assembled packet header and data fragment information. The TSM
directs the TCB to the appropriate driver which collects the header and
packet fragments and transmits the packet.

The following section describes the TCB structures used during packet
transmission. The structures are defined in the MSM.INC file.

4 – 16 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

TCB for Ethernet, Token-Ring, PCN2, and FDDI

Figure 4.5 Ethernet, Token-Ring, and FDDI Transmit Control Block

TCBStructure struc

TCBDriverWS dd 3 dup (0) ; Driver Workspace

TCBDataLen dd ? ; Total Fragment + Media Header Length

TCBFragStrucPtr dd ? ; Pointer to Fragment Structure

TCBMediaHeaderLen dd ? ; Length of Media Header

TCBStructure ends

;; TCBMediaHeader equ TCBMediaHeaderLen + 4 ; Media Header Buffer

TCBDriverWS

TCBDataLen

TCBFragStrucPtr

TCBMediaHeaderLen

TCBMediaHeader

(Fragment Structure)

TCB Field Descriptions

Offset Name Bytes Description

00h TCBDriverWS 12 The HSM may use this field for any purpose as long

as it controls the TCB.

0Ch TCBDataLen 4 This field contains the length of the packet described

by the data fragments plus the media header. This

value will never be 0.

10h TCBFragStrucPtr 4 This field contains a pointer to a list of fragments

defined by the FragmentStructure (described

following the TCB section).

14h TCBMediaHeaderLen 4 This field contains the length of the Media Header

that immediately follows the TCB in memory. This

value may be odd, even, or zero. A value of zero

indicates a raw send. If the HSM is handed a raw

send, the originating protocol stack has already

included the media header in the first data fragment.

18h TCBMediaHeader ? Immediately following the TCB in memory is a buffer

containing the Media Header that was assembled by

the MSM.

Version 1.00 4 – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

TCB for RX-Net

Figure 4.6 RX-Net Transmit Control Block

TCBStructure struc

TCBDriverWS dd 3 dup (0) ; Driver Workspace

TCBDataLen dd ? ; Total Fragment + Media Header Length

TCBFragStrucPtr dd ? ; Pointer to Fragment Structure

TCBMediaHeaderLen dd ? ; Length of First Media Header

TCBStructure ends

;; TCBMediaHeader db 3 or 4 dup (?) ; First Media Header *

;; TCBSecondHeaderLen db ? ; Length of Second Media Header

;; TCBSecondHeader db 4 or 8 dup (?) ; Second Media Header **

TCBDriverWS

TCBDataLen

TCBFragStrucPtr

TCBMediaHeaderLen

TCBMediaHeader *

•
• (Fragment Structure)
•

TCBSecondHeaderLen

TCBSecondHeader **

•
•
•

* TCBMediaHeader is 3 bytes for Short Packets, and 4 bytes for Long or

Exception Packets.

** TCBSecondHeader is 4 bytes for Short or Long Packets, and 8 bytes for

Exception Packets.

4 – 18 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

TCB Field Descriptions (RX-Net)

Offset Name Bytes Description

00h TCBDriverWS 12 This field is used by the MSM to link the TCBs

0Ch TCBDataLen 4 This field contains the length of the packet described

by the data fragments plus the media header. This

value will never be 0.

10h TCBFragStrucPtr 4 This field contains a pointer to a list of fragments

defined by the FragmentStructure (described

following this section).

14h TCBMediaHeaderLen 4 This field contains the length of the first media

header.

Immediately following the TCB in memory is a buffer containing the media header information.

18h TCBMediaHeader 3 or 4 This field contains the first media header. The

header is 3 bytes for Short Packets and 4 bytes for

Long or Exception Packets.

? TCBSecondHeaderLen 1 This field contains the length of the second media

header.

? TCBSecondHeader 4 or 8 This field contains the second media header. The

header is 4 bytes for Short or Long Packets, and 8

bytes for Exception Packets.

Note: Several fields of the above table reference the different types of RX-Net
packets. Figure 4.7 on the following page shows the three RX-Net
packet formats. A full description of each is included in Appendix D.

Version 1.00 4 – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Figure 4.7 RX-Net Packet Format

Short Packet Long Packet Exception Packet

Source Address Source Address Source Address

Destination Address Destination Address Destination Address

Byte Offset Long Packet Flag Long Packet Flag

Unused Byte Offset Byte Offset

Unused Unused

Protocol Type

Split Flag Protocol Type Pad 1: Protocol Type

Packet Sequence Number Split Flag Pad 2: Split Flag

Packet Sequence Number Pad 3: FFh

Data

(0-249 bytes)

Pad 4: FFh

Data

(253-504 bytes)

Protocol Type

Split Flag

Packet Sequence Number

Data

(250-252 bytes)

4 – 20 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Fragment Structure

The following section describes the format of the fragment structure
pointed to by the TCBFragStrucPtr field of the Transmit Control Block.

Figure 4.8 TCB Fragment Structure

FragmentCount dd ? ; Number of Fragments

FragmentOffset1 dd ? ; Pointer to the 1st Data Fragment

FragmentLength1 dd ? ; Length of the 1st Data Fragment

•
•
•
•
•

FragmentOffsetn dd ? ; Pointer to the nth Data Fragment

FragmentLengthn dd ? ; Length of the nth Data Fragment

FragmentCount

FragmentOffset1

FragmentLength1

• •
• • (Data)
• •
• •
• •

FragmentOffsetn

FragmentLengthn

(Data)

Offset Name Bytes Description

00h FragmentCount 4 This field contains the number of data fragment

descriptors to follow. Each descriptor consists of a

pointer to a fragment buffer and the size of that buffer.

The HSM collects the data from these buffers when

forming the packet for transmission.

04h

08h

FragmentOffset1

FragmentLength1

FragmentOffsetn

FragmentLengthn

4

4

Pointer to the buffer containing the first data fragment.

Length of the buffer pointed to by FragmentOffset1.

(These fields contain additional fragment descriptors)

Version 1.00 4 – 21

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Event Control Blocks

This section defines the general Event Control Block (ECB) structure
and illustrates its relationship to the RCB and TCB. This section does
not apply to most drivers written with the MSM / TSM interface.

Drivers written using the MSM / TSM interface typically interact with
RCBs and TCBs during packet transactions as shown in the figure
below. However, some drivers may need to bypass these MSM provided
structures in order to work directly with the underlying general ECB
structure. This is typically the case for intelligent adapters that are
designed to be ECB aware.

An ECB aware adapter/driver will completely fill in and manage all
fields of the ECB during packet transactions. This shifts much of the
overhead involved in packet reception and transmission to the adapter
giving the processor more time to perform other tasks.

Note: This section only applies to ECB aware adapters/drivers.

Link Support Layer

Support Modules

Hardware Specific Module

RCB TCB

ECB

(MSM/TSM)

(HSM)

4 – 22 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

The format of the ECB structure is shown in Figure 4.9. The same
structure is used for both receiving and transmitting packets.

Figure 4.9 Event Control Block

ECBStructure struc

Link dd ? ; Forward Link used for Queuing ECBs

BLink dd ? ; Backward Link used for Queuing ECBs

Status dw ? ; Current ECB Status

ESRAddress dd ? ; Event Service Handler

LogicalID dw ? ; Protocol Logical ID

ProtocolID db 6 dup (?) ; Protocol ID **

BoardNumber dd ? ; Logical Board # from Configuration Table

ImmediateAddress db 6 dup (?) ; Rx...Source Addr / Tx...Destination Addr

DriverWorkSpace dd ? ; Driver Workspace / Dest and Frame Type **

ProtocolWorkSpace db 8 dup (?) ; Protocol Stack Workspace

PacketLength dd ? ; Length of the Packet Data

FragmentCount dd ? ; Number of Fragments

FragmentOffset1 dd ? ; Pointer to the 1st Fragment Buffer

FragmentLength1 dd ? ; Length of the 1st Fragment Buffer

ECBStructure ends

• ; Additional Fields follow for both
•
• ; Receive and Transmit ECBs

During packet reception, these fields must be filled in by the ECB Aware

Adapter/Driver before passing the ECB to the upper layers. During packet

transmission, all fields are filled in by the upper layers before passing

the ECB to the driver.

** 802.2 frame types require special handling of the ProtocolID and

DriverWorkSpace fields in the ECB during packet reception and transmission

(refer to Appendix D).

Version 1.00 4 – 23

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Receive ECBs vs RCBs

The general Receive ECB and the MSM’s RCB essentially form a union.
That is, both structures occupy the same memory space.

Figure 4.10 Receive ECBs vs RCBs

ECB Fields RCB Fields

Link
RCBDriverWS

Blink

Status

ESRAddress

LogicalID

ProtocolID

BoardNumber RCBReserved

ImmediateAddress

DriverWorkSpace

ProtocolWorkSpace

PacketLength

FragmentCount

FragmentOffset1 * * * * RCBFragment

FragmentLength1 * * * * Fields

MediaHeader

Data
RCBDataBuffer

The ECB fields that correspond to RCBReserved are normally managed
by the TSM. However, if an adapter is ECB aware, it can simply treat
the structure as an ECB and take over the management of these fields.

Drivers written for ECB aware adapters must obtain control blocks by
calling MSMAllocateRCB. This routine allows the driver to preallocate
RCBs without the MSM initializing the fields. When a packet is
received, the adapter copies it into the RCBDataBuffer, fills in the
required fields (see Figure 4.9), and returns the structure using either
the <TSM>RcvComplete / MSMServiceEvents combination or the
function <TSM>FastRcvComplete.

4 – 24 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

Transmit ECBs vs TCBs

The general Transmit ECB and the TSM’s TCB are totally separate
structures. The TCBFragStrucPtr field of the TCB, however, points to
the FragmentCount field of the ECB. Knowing this, it is possible to
work directly with the underlying ECB by using both negative and
positive offsets from this pointer.

The MSM provides another more efficient way for ECB Aware adapters
to work directly with ECBs. By setting the DriverSendWantsECBs
variable of the DriverParameterBlock to any non-zero value (see
Chapter 3), the HSM’s DriverSend routine will be given ECBs rather
than TCBs for packet transmission. The HSM will then be responsible
for building the proper media header depending on the board number.

Figure 4.11 Transmit ECBs vs TCBs

TCB Fields

TCBDriverWS

TCBDataLen

TCBFragStrucPtr

TCBMediaHeaderLen

TCBMediaHeader

ECB Fields

Link

BLink

Status

ESRAddress

LogicalID

ProtocolID

BoardNumber

ImmediateAddress

DriverWorkSpace

ProtocolWorkSpace

PacketLength

FragmentCount

FragmentOffset1

FragmentLength1

• •
• •
• •
• •
• •

FragmentOffsetn

FragmentLengthn

Version 1.00 4 – 25

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ECB Field Descriptions

Offset Name Bytes Description

00h Link 4 This field contains a forward link to another ECB. The

LSL uses this field for queuing ECBs. The HSM may

use this field for any purpose as long as it controls the

ECB.

04h BLink 4 This field contains a backward link to another ECB. The

LSL uses this field for queuing ECBs. The HSM may

use this field for any purpose as long as it controls the

ECB. However, if the HSM uses DriverSendWantsECBs

to get ECBs instead of TCBs, it must NOT modify the

transmit ECB’s BLink field.

08h Status 2 This field should not be modified by the HSM. The LSL

uses the Status field to indicate the current state of the

ECB. (i.e., currently unused, queued for sending, etc.).

0Ah ESRAddress 4 This field should not be modified by the HSM. In receive

ECBs, the LSL places a pointer to the target protocol

stack’s receive handler in this field and then queues the

receive ECB on a hold queue. Later, the LSL polls the

hold queue and routes the ECB to the proper protocol

stack by calling the address in this field.

0Eh LogicalID 2 This field should not be modified by the HSM. When a

protocol stack registers with the LSL, it is assigned a

logical number (0...15). This field contains that logical

number or, if the packet is a raw send, the field contains

the value FFFFh. On sends, the protocol stack places its

own logical number in this field. On receives, the LSL

places the target stack’s logical number in this field.

10h ProtocolID 6 This field contains the protocol ID (PID) value on both

sends and receives. This value is stored in High-Low

order. For the 802.2 frame type, on sends, this field also

contains the 802.2 frame type information (Type I or II)

required to build the media header (See Appendix D for

an explanation of 802.2 Type I and Type II use of this

field). On receives, this field always contains the DSAP

value of the 802.2 header.

16h BoardNumber 4 When a driver registers with the LSL, it is given a

logical board number. The MLIDBoardNumber field of

the configuration table contains that number (see

Chapter 3). Logical board 0 is used internally in the

operating system. Drivers are assigned logical board

numbers 1 through 255. On receives, the HSM must fill

in this field to indicate which logical board received the

packet. On sends, a protocol stack fills in this field to

indicate the target logical board.

4 – 26 Version 1.00

Chapter 4 • MSM/TSM Data Structures and Variables

ECB Field Descriptions

-(continued)-

1Ah ImmediateAddress 6 On receives, the immediate address represents either the

packet’s source node address or the address of the last

router that passed the packet if the packet was routed

from another network. On sends, the immediate address

represents either the destination node address or the

destination router address.

The address is stored in High-Low order. If the node

address is less than six bytes, the most significant

byte(s) must be padded with 0.

The MSM fills in this field on receives. Addresses passed

to the upper layers may be in canonical or non-canonical

format depending upon whether the driver bit-swaps

MSB format addresses. The stack fills in this field on

sends. All addresses passed down to the MLID are in

canonical format if the driver is configured to be LSB.

(Refer to MSMPhysNodeAddress description)

20h DriverWorkspace 4 The HSM can use this field for any purpose. The LSL

will not modify the field. However, before passing a

completed receive ECB to the LSL, fill in the first byte of

the field (offset 20h) with the destination address type of

the received packet:

00h = Direct 08h = Remote Multicast

01h = Multicast 10h = No Source Route

03h = Broadcast 20h = Error Packet

04h = Remote Unicast

Set the second byte of this field (offset 21h) to indicate

whether the MAC header contains one or two 802.2

control bytes:

0 = All frame types other than 802.2

1 = 802.2 header has only Ctrl0 byte (Type I)

2 = 802.2 header has Ctrl0 and Ctrl1 (Type II)

See Appendix D for an explanation of 802.2 Type I and

Type II.

24h ProtocolWorkspace 8 This field is reserved for use by the protocol stack.

2Ch PacketLength 4 This field contains the total length of the packet in bytes.

This is the length of the data portion of the packet (not

including media or SAP headers).

On receives, this value is equal to the FragmentLength1

(length may be 0). The HSM for ECB aware adapters

must fill in this field.

On sends, this value may be zero. The protocol stack

fills in this field.

Version 1.00 4 – 27

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ECB Field Descriptions

-(continued)-

30h FragmentCount 4 This field contains the number of data fragment

descriptors to follow. Each descriptor consists of a

pointer to a fragment buffer and the size of that buffer.

On receives, the fragment count is always one or greater.

On sends, the fragment count can be zero.

34h

38h

FragmentOffset1

FragmentLength1

4

4

On receives, immediately following the ECB in memory

is a buffer where the HSM copies the received packet.

After the packet is copied into the buffer the HSM must

set the FragmentOffset to point around any media

headers to the data portion of the packet. The HSM

must also set the FragmentLength field to the total

length of the data portion of the packet (see Figure 4.10)

On sends, the FragmentOffset field points to the first

fragment buffer containing packet data. The

FragmentLength field specifies the length of that buffer.

This value can be zero. Immediately following the ECB

in memory there may be additional fragment descriptors.

The HSM collects the data from these fragment buffers

to form the packet for transmission (see Figure 4.11).

On receives, the memory immediately following the ECB contains:

3Ch MediaHeader varies The media header of a packet is placed in this field.

This field varies in length and appears only in Receive

ECBs. This field is not used or present if the LAN media

splits the data of a packet and transmits it in more than

one frame (for example RX-Net).

??h Data varies Immediately following the MediaHeader is the data

portion of the packet.

On sends, the memory immediately following the ECB contains:

3Ch

40h

FragmentOffset2

FragmentLength2

4

4

These fields contain additional fragment descriptors

when the FragmentCount field is greater than 1.

4 – 28 Version 1.00

